

"Electrochemical Quartz

Crystal Microbalance"

<u>R. Hillman</u>

Professor (arh7@le.ac.uk)

H. Perrot

DR2 CNRS (hubert.perrot@upmc.fr)

University of Leicester-Leicester-U.K. University P. and M. Curie Paris-France

Tutorials EQCM

SESSION I: Fundamentals and experimental implementation

1. Introduction (RH)

2. Methodology of measurements (HP)

- 2.1 Basic concepts
- **2.2 Instrumentation based on quartz resonators**
- 2.3 Other acoustic wave devices
- 2.4 Electrochemical coupling techniques

3. Data interpretation, limitations, modelling (HP & RH)

- 3.1 Response factors (HP)
- 3.2 Gravimetric application (RH)
- 3.3 Electroacoustic approach (RH)
- 3.4 Electrogravimetric measurements (HP)

SESSION II: Exploitation for study of real systems

4.1 Materials (RH)

4.2 Phenomena (HP & RH) <u>4.2.1 Adsorption / desorption (RH)</u> <u>4.2.2 UPD (RH)</u> <u>4.2.3 (Bulk) deposition /dissolution (HP)</u> <u>4.2.4 Molecular recognition (HP)</u> <u>4.2.5 Complexation (RH)</u> <u>4.2.6 Ion exchange (HP)</u> <u>4.2.7 Wetting / solvation (RH)</u> <u>4.2.8 Viscoelasticity (RH)</u> <u>4.2.9 Stress& mechanical motion (RH)</u>

5. Questions and further information (HP & RH)

"Electrochemical Quartz Crystal Microbalance"

R. Hillman

Professor (arh7@le.ac.uk)

H. Perrot

DR2 CNRS (hubert.perrot@upmc.fr)

University of Leicester-Leicester-U.K. University P. and M. Curie Paris-France

Characterization of electrochemical interfaces is ...

... ジグソーパズル

Characterization of electroactive film materials is ...

... ukĺadanka

2. Methodology of measurements (H. Perrot)

2.1 Basic concepts

University of

Leicester

- Piezoelectric effect: direct or reverse
 - $\begin{array}{ll} \text{pressure} \rightarrow \text{charge} \\ \text{charge} & \rightarrow \text{distorsion} \end{array}$

▶ Piezoelectric crystals: quartz, GaPO₄, ...

AT-cut, single rotation

Classical quartz: AT cut 35' 12"

University of Leicester

► Wave propagation of the u.s.

- Thickness Shear Moder (TSM)
- Bulk Acoustic Wave (BAW)
- Resonant condition
- n: overtone number

Resonant frequency change (basic interpretation)

2.2 Instrumentation based on quartz resonators

2.2.1 Active mode or classical QCM

Upper and lower electrodes

Quartz resonator (6 MHz)

e_q = 275 μm $\dot{e_{gold}}$ = 0.2 μm Cr underlayer

Frequency counter

AT-cut quartz crystal

Quartz holder

quartz microbalance

Computer

Complete experimental set-up

University of Leicester

Condition of Barkhausen (or oscillation): phase shift: 0° and gain > 1

Example: Miller configuration

 $Re[Y_2Y_3 + Y_1Y_3 + Y_1Y_2] = 0$

Schematic representation with the different values given previously

Electrochemical

system

Δ

۸V

$$\Rightarrow \mathsf{Y}_{\mathsf{exp}}^{\mathsf{electroacoustic}} = \frac{\Delta \mathsf{I}}{\Delta \mathsf{V}}$$

ΛΙ

f: few MHz

► How to do the electroacoustic measurements

Different apparatus can be used: HP 4194A, Agilent 4294A, Solartron 1260...

Two key parameters can be extracted directly: R and f_s close to f_m

cnrs

Fast estimation and more accurate values available by fitting

2.2.3 Sensitivity of the quartz resonators

First equation for the gravimetric sensor

$$\Delta \mathbf{f_m} = -2.26 \ 10^{-6} \ \frac{\mathbf{f_n^2}}{\mathbf{n}} \frac{\Delta \mathbf{m}}{\mathbf{A}} = -\mathbf{k_S^{th}} \Delta \mathbf{m}$$

Sauerbrey equation (1959):

- Valid for small mass changes ($\Delta m < 10\%$ of the total mass of the quartz)
- Valid for purely elastic material as quartz or equivalent

Theoretical sensitivity:

At 6 MHz: 1 Hz is equivalent to few ng, it is less than one monolayer of adsorbed oxygen on the electrode surface!

Interests:

University of Leicester

- in-situ measurement

- fast response

- high mass sensitivity

Theoretical mass sensitivity

f _m /MHz	e/µm	k th /Hz g ⁻¹ cm ⁻²	Gain / 6 MHz
6 fundamental mode	278	8.14 10 ⁷	-
9 fundamental mode	185	18.31 10 ⁷	X2.25
27 (9 MHz 3 rd overtone)	185	54.95 10 ⁷	X6.75
27 fundamental mode	62	164.85 10 ⁷	X20.25

In term of direct mass:

f _m /MHz	k th /Hz g ⁻¹ cm ⁻²	∆m/ng cm ⁻² if ∆f _m =1 Hz	∆m/ng if ∆f _m =1 Hz (A=0.2 cm²)
6 fundamental mode	8.14 10 ⁷	12.28	2.457
9 fundamental mode	18.31 10 ⁷	5.46	1.092
27 (9 MHz 3 rd overtone)	54.95 10 ⁷	1.82	0.364

University of **Leicester**

Electrodeposition under controlled current:

 $Cu^{2++2e^-} \rightarrow Cu$

- microbalance frequency shift: Δf_m
- mass change from the Faraday law: $\Delta m_{\rm F}$

$$k_{S}^{exp} = \frac{\Delta f_{m}}{\Delta m_{F}}$$

 $k = 55.73 \ 10^7 \ Hz.g^{-1}.cm^2$ 0 0.1 mA -50 $k = 59.45 \ 10^7 \ Hz.g^{-1}.cm^2$ 0.5 mA $\Delta f_{\rm m}/kHz$ -100 -150 -200 $k = 56.02 \ 10^7 \ Hz.g^{-1}.cm^2$ 0.7 mA -250 100 200 300 400 500 0 Time/s

Frequency/MHz	$\Delta m/ng \text{ if } \Delta f_m = 1 \text{ Hz } (A = 0.2 \text{ cm}^2)$		
	Experimental/pg	Theoretical/pg	
6	2670	2454	
9	1226	1093	
27(3)	350	364	

- 2.3 Other acoustic wave devices
- Overview of different microbalances

Electrochemistry

Biosensors

Other acoustic wave devices

Device

Mass sensitivity

Mass for 1Hz

 $-2.26 \ 10^{-6} \ f_0^2$ 200 MHz: 10 pg cm⁻²

104 MHz: 1 ng cm⁻²

University of **Leicester**

2.4 Electrochemical coupling techniques

- 2.4.1 Cyclic electrogravimetry
- Electroactive film on the QCM

$$\left\{ \begin{bmatrix} P^{n+}.nX^{-} \end{bmatrix} \alpha \begin{bmatrix} Y^{+}X^{-} \end{bmatrix} \beta \begin{bmatrix} H_2O \end{bmatrix} \right\}_p + \nu e^{-} \Leftrightarrow \left\{ \begin{bmatrix} P^{(n-\nu)+}.(n-\nu)X^{-} \end{bmatrix} (\alpha-\delta) \begin{bmatrix} Y^{+}X^{-} \end{bmatrix} (\beta-\epsilon)H_2O \right\}_p + \delta Y_s^{+} + (\delta+\nu)X_s^{-} + \epsilon \begin{bmatrix} H_2O \end{bmatrix}_s + \delta Y_s^{-} + \delta Y_s^{-}$$

Motion of electrons and ions due to the film electroactivity

- Current response: i=k(V)
- Mass response: m=k'(V)

2.4.2 ac-electrogravimetry

Potential modulation

University of

Leicester

Electroactive film on the QCM

$$\left\{ \begin{bmatrix} P^{n+}.nX^{-} \end{bmatrix} \alpha \begin{bmatrix} Y^{+}X^{-} \end{bmatrix} \beta \begin{bmatrix} H_2O \end{bmatrix}_{p} + \nu e^{-} \Leftrightarrow \left\{ \begin{bmatrix} P^{(n-\nu)+}.(n-\nu)X^{-} \end{bmatrix} (\alpha-\delta) \begin{bmatrix} Y^{+}X^{-} \end{bmatrix} (\beta-\varepsilon)H_2O \right\}_{p} + \delta Y_s^{+} + (\delta+\nu)X_s^{-} + \varepsilon \begin{bmatrix} H_2O \end{bmatrix}_{s} + \delta Y_s^{-} + \delta Y_s^$$

- Small amplitude to keep the linear regime (ΔV)
- Under equilibrium (V_s)

EQCM

Potential modulation

Frequency Response Analyzer (FRA):

$$\frac{\Delta \mathbf{m}}{\Delta \mathbf{E}} = \frac{|\Delta \mathbf{m}|}{|\Delta \mathbf{E}|} \mathbf{e}^{\mathbf{j}(\Phi_{m} - \Phi_{E})}$$

At a given frequency modulation $(\omega = 2 \times \pi \times f)$

Interests:

- linear regime (models)
 - frequency dependent: kinetic information
 - possibility of electrochemical coupling
 - ionic identification
 - non charged species detected

ISE Nice 2010-Tutorials Microbalance

University of Leicester

Experimental set up

University of **Leicester**

2.4.3 SECM and microbalance

3. Data interpretation, limitations, modelling (HP and ARH)

3.1. Response factors

Mass

University of

Leicester

Resonant condition: $e = \frac{n\lambda_n}{2}$ where e is the film thickness and λ_n is the wave length First relation: $\lambda_n = v \frac{1}{f_n}$ where v is the u.s. speed and f_n Second relation: $e = \frac{m}{A\rho}$ where m is the mass of the quartz, A the active surface and ρ , the quartz density.

Thus, by combining theses equations, it leads to: $f_n = \frac{nvA\rho}{2m}$

For an increase of mass
$$\Delta m$$
: $\Delta f_n + f_n = \frac{nvA\rho}{2(m + \Delta m)} = \frac{nvA\rho}{2m(1 + \frac{\Delta m}{m})}$

If Δm is small compared with m then: $\Delta f_n + f_n = \frac{nvA\rho}{2m}(1 - \frac{\Delta m}{m})$ (Taylor expansion) According to the definition of f_n : $\Delta f_n = \frac{nvA\rho}{2m}(1 - \frac{\Delta m}{m}) - \frac{nvA\rho}{2m}$

and after simplification:
$$\Delta f_n = -\frac{nvA\rho}{2m^2}\Delta m$$

As $m = \frac{nvA\rho}{2f_n}$, it comes: $\Delta f_n = -\frac{2}{v\rho}\frac{f_n^2}{n}\frac{\Delta m}{A}$
Sauerbrey equation: $\Delta f_n = -2.26 \ 10^{-6} \frac{f_n^2}{n}\frac{\Delta m}{A}$

-Valid for small mass changes (△m<10% of the total mass of the quartz)
 -Valid for material purely elastic as quartz crystal or equivalent
 -Valid for an infinite and uniform film

University of

Leicester

UPARISUNIVERSITAS

Viscosity and density (Kanazawa and Gordon)

$$\Delta \mathbf{f}_{\mathbf{m}} = -\mathbf{f}_{\mathbf{n}}^{-\frac{3}{2}} \left(\frac{\rho_{\mathbf{l}} \eta_{\mathbf{l}}}{\pi \mu_{\mathbf{q}} \rho_{\mathbf{q}}}\right)^{\frac{1}{2}}$$

where μ_{q} is the quartz stiffness, ρ_{q} the quartz density, ρ_{l} the solution density and η_{l} the solution viscosity.

In means, at 6 MHz, the frequency shift between air and water is around 2kHz

Combining mass effect and liquid effect (Martin)

$$\Delta f_{m} \cong -\frac{2f_{n}^{2}}{N\sqrt{\bar{c}_{66}\rho_{q}}} \begin{bmatrix} \rho_{f}h_{f} + \left(\frac{\rho_{l}\eta_{l}}{4\pi f_{n}}\right)^{\frac{1}{2}} \\ \uparrow & \\ mass & viscosityxdensity \end{bmatrix}$$

University of Leicester

Effect of the liquid conductivity (Hager)

$$\Delta f_m = -k_1 \Delta (\rho_l \eta_l)^{1/2} + f(\Delta \varepsilon_l)$$

where

- k₁ is a numeric constant
- ρ_{I} is the liquid density
- η_{I} is the liquid density

and $f(\Delta \epsilon_{I})$ is a function of the dielectric constant

University of **Leicester**

Viscoelastic films (Mason, Martin...)

 $f_m = f(\rho_f, h_f, G', G'')$ where ρ_f is the film density, h_f the film thickness and G', G'' the viscoelastic parameters of the film.

Criteria to validate the gravimetric regime

- 1. Complementary techniques: electrochemistry, ellipsometry...
- 2. Electroacoustic measurements: approach by measuring f_s and R

Case	Parameters	Exp. data	Interpretation
Rigid layer (Sauerbrey)	$ ho_{s}$ (mass density)	∆f _s ; ∆ R=0	$\Delta f_{s} \uparrow \rightarrow \downarrow \rho_{s}$
Newtonian medium	ρ _ι , η _ι	$\Delta f_s \text{ or } \Delta R$	$\Delta f_{s} \uparrow \rightarrow \downarrow \sqrt{\rho_{l} \eta_{l}}$ or $\Delta R \uparrow \rightarrow \uparrow \sqrt{\rho_{l} \eta_{l}}$
Viscoelastic layers	ρ _f ,h _f ,G',G"	Complete spectrum	See RH contribution

Piezoelectric Transducers and Appli., A. Arnau Ed., Springer 2008

Gravimetric application

Processes involved

Electron transfer

• Q, but not Δm

Coupled counter ion transfer (for films)

- electroneutrality constraint
 - 🏷 Q, but not ∆m

Solvent transfer for films

Structural change

- triggered by charge and/or volume effects
- e.g. polymer relaxation
 - \clubsuit directly, neither Q nor Δ m
 - \clubsuit indirectly, possibly Δm

Co-ion ("salt") transfer

• activity constraint (permselective at low concentration) $\stackrel{\scriptstyle{\leftarrow}}{\leftarrow}$ not Q, but Δ m ISE Nice 2010-Tutorials Microbalance

University of

leicester

Diagnostic: mass change vs charge plot

Qualitatively

- sign of slope indicates ion charge
- zero slope signals "neutral" (solvent, salt)

Quantitatively

- value of slope indicates molar mass
- seldom clearly resolved
 - "weighted" average of several species

Solvent transfer

- thermodynamically to be expected
- may be minor or major
- may be bound or free
 - Solution States Action States and States and
 - timescale (e.g. voltammetric scan rate) may resolve?

Universitv of

elcester

University of Leicester

PVF REDOX SWITCHING: kinetic permselectivity

University of **Leicester**

Polyaniline redox-driven ion and solvent transfer

Polyaniline / 1 M HClO₄

scan rate, v / mV s⁻¹: 5 (●), 10 (▲), 20 (♦).

Acoustically thin film: $\Gamma = 35 \text{ nmol cm}^{-2}$

Visualizing mechanistic possibilities

Identify different types of elementary step

- assign each to a coordinate (dimension)
- coupled processes require only one dimension
 - coupled electron / counter ion transfer
- each coordinate associated with a characteristic timescale
 - ♦ characteristic dependence on E, T, pH, c, ...

Apply principle of "scheme-of-squares"

extend to required number of elementary steps, i.e. dimensions
♦ e/A⁻ & S ⇔ 2D
♦ e/A⁻ & C⁺A⁻ ⇔ 2D
♦ e/A⁻ & S & P ⇔ 3D
♦ e/A⁻ & S & C⁺A⁻ ⇔ 3D

University of Leicester

Identify pathways

recognize mechanistic diversity

High overpotential

Mechanistic possibilities for oxidation

Electron/ion transfer first

ECC'

EC'C

Low Overpotential

Solvent transfer first

CC'E

CEC'

Polymer reconfiguration first

L LE ISE Nice 2010-Tutorials Microbalance

Nomenclature

Corners represent species

signal redox state, solvation, structure

Edges represent processes

- analogous process may link different species
- consider absolute mass and mass change?

University of

eicester

Multiple similar elementary steps

fused cubes

"Diagonal" transfers possible

- represent coupling
- energetically unlikely
- require similar timescales

+CA -e. +/

+S/

Electroacoustic approach

Leicester Resonator coupling to ambient medium

Film motion

University of

- Resonator induces motion at electrode surfaces
- Rigidly coupled films move synchronously with exciting electrode
 - \checkmark phase shift, $\phi = 0$

b acoustic deformation

- \checkmark phase shift, $\phi > 0$
- Acoustic deformation changes with polymer loading

- $\oint \phi$ decreases with G
- \oint film resonance when $\phi = \pi/2$

AT-Quartz

Electrodes

- Solution mobile species exchange $4 \Delta f = -\left(\frac{2f_0^2}{\rho_q v_q}\right) \frac{\Delta m}{A} \quad gives \Delta \Gamma$
- cnrs

ISE Nice 2010-Tutorials Microbalance

🤄 🗶 → G = G' + jG"

In situ application

- description of fluid damping
- mass (population) changes of "rigid" films

Viscoelastic effects

- crystal admittance (full frequency response)
- diagnose "rigid" vs viscoelastic films
- recognition of film resonance ($\phi = \pi/2$)

Viscoelastic film characterisation

- simple model for $Z_s \& Z_e = f(G, h_f, \rho_f)$
- extracting film parameters ("uniqueness of fit")

Models for practically useful structures

CNTS

University of Leicester

Electrical and surface mechanical impedance

Transmission line model

$$Z_m^1 = \frac{\varphi_q \left(Z_s / Z_q \right)}{4 K^2 \omega C_0} \left[1 - \frac{j \left(Z_s / Z_q \right)}{2 \tan \left(\varphi_q / 2 \right)} \right]$$

Lumped element model

Acoustically thick film in fluid

General expression for Z_s

University of

Leicester

$$Z_{s} = Z_{0} \left(\frac{Z_{1} + Z_{0} \tanh(\beta h)}{Z_{0} + Z_{1} \tanh(\beta h)} \right)$$

film $Z_{0} = \left(\rho_{f}G\right)^{1/2}$ liquid $Z_{1} = \left(\omega\rho\eta/2\right)^{1/2}\left(1+j\right)$ $\beta = j\omega\left(\rho_{f}/G\right)^{1/2}$

Let film thickness, $h \rightarrow \infty$

$$h > \delta = \frac{1}{\omega} \sqrt{\frac{2G}{\rho_f}} \qquad \qquad Z_s \approx Z_0 = \left(\rho_f G\right)^{1/2}$$

Surface mechanical impedance components

COS
$$\operatorname{Re}(Z_s) = \sqrt{\frac{\rho_f}{2}} \sqrt{|G| + G'}$$
 $\operatorname{Im}(Z_s) = \sqrt{\frac{\rho_f}{2}} \sqrt{|G| - G'}$

Acoustically thinner film in a fluid

Express in terms of film & fluid parameters

Express in terms of acoustic phase shift

$$\phi = \omega h \sqrt{\frac{\rho_f}{G}}$$

$$Z_{s} = j\omega h\rho_{f} + \frac{\omega^{2}\rho\eta h}{G} + \left(\frac{\omega\rho\eta}{2}\right)^{1/2} \left(1 + j\right) \left[1 + \varphi^{2}\left(1 - j\left(\frac{\omega\rho\eta}{\rho_{f}G}\right)\right)\right]$$

University of

.eicester

The fitting problem

• use film parameters to calculate acoustic (electrical) impedance

 $\stackrel{\text{\tiny \clubsuit}}{\hookrightarrow} [h_{f}, \rho_{f}, G', G''] \rightarrow Z_{S}(\omega) = \text{Re}(Z_{S}) + j \text{ Im}(Z_{S})$

4 input parameters \rightarrow 2 output parameters..... *no problem* **Experimental application**

• wish to use acoustic (electrical) impedance to calculate film parameters

 $\stackrel{\mathsf{t}}{\hookrightarrow} \mathsf{Z}_{\mathsf{s}}(\omega) = \mathsf{Re}(\mathsf{Z}_{\mathsf{S}}) + \mathsf{j} \mathsf{Im}(\mathsf{Z}_{\mathsf{S}}) \rightarrow \ [\mathsf{h}_{\mathsf{f}}, \, \rho_{\mathsf{f}}, \, \mathsf{G}', \, \mathsf{G}'']$

♦ 2 input parameters → 4 output parameters ……underdetermined

Previous (gravimetric) approaches

- restrict attention to acoustically thin films ($R_2 = 0$; $\phi = 0$)
 - $[\Delta f, Q] \rightarrow [h_f, \rho_f]$

..... no viscoelastic insight

- acoustically thick films
 - \clubsuit assume $\rho_f = \rho_S$, ρ_P or 1
 - ♦ assume G' « G" or value for loss tangent (G'/G")
 - separately estimate h_f

.....assumptions to reduce to 2 parameter problem

CNTS

University of Leicester

Theory

♦ use higher harmonics may assume information sought

Strategy

First attempt

University of Leicester

• 4 parameter fit, with "soft" constraints on 2 parameters

 $\label{eq:relation} \clubsuit \mbox{ film density: } \rho_S \le \rho_f \le \rho_P \mbox{ or } \rho_S \ge \rho_f \ge \rho_P$

 \clubsuit film thickness: $h_f \ge h_f^0$ h_f^0 defined by Q and ρ_P

𝔅 fit impedance response: Z_S(ω)→ [G', G"]

.....imperfect

New approach

• split into two separate 2-parameter problems, each fully determined acoustically thin film: $[\Delta f, "X"] \rightarrow [h_f, \rho_f]$

by assume film homogeneity: $h_f \alpha$ "X"; $ρ_f$ = constant

𝔅 acoustically thick film: $Z_S(ω) → [G', G'']$

..... unique fit

["X" = any measure of coverage, e.g. electrochemical charge Q]

University of Leicester

See: Jackson: Anal. Chem., 73 (2001), 540.

2.1 Materials

					Phe	iomena				
Material class	Examples मु	Adsorption /desorption*	UPD	Bulk deposition /dissolution	Molecular recognition	Complexation	Ion exchange**	Wetting / solvation	Viscoelasticity	Stress / mechanical motion
	Presenter*** ⇒	RH	RH	HP	HP	RH	HP	RH	RH	RH?
Halides	Cl', Br', I (SCN', CN')	✓								
Thiols (SAMs)	C _n H _{ın+1} SH, þSH	~			~	✓		~		
Organics	Calixarenes, DNA, antibodies	\checkmark			✓	 ✓ 				
Dendrimers		\checkmark			\checkmark	\checkmark				
Supramole cular systems				~						
LbL films	?	✓								
Biological cells				\checkmark	\checkmark				\checkmark	
Nanostructured films	PS/Pt			V				~		
Metals	Ag, Au, Cu, Pb, Sb		✓	✓				\checkmark		✓
Metal (hydr)oxides	WO3, IrO2, Ni(OH)2			\checkmark			<u><</u>	\checkmark		√
Inorganic salts	Prussian Blue & analogues			\checkmark			<u><</u>			
Semiconductors	CdSe, CdTe,??		\checkmark	×						\checkmark
Insulating polymers	PPO & derivatives			~						
Redox polymers	PVF, Os(PVP)			\checkmark		\checkmark	 ✓ 	✓	\checkmark	\checkmark
Conducting polymers	PPy, PAni, PT, PCz, PAz, PEDOT & derivatives			√		✓	~	~	×	✓

*Multiple examples illustrate monolayer vs multilayer films ** Use multiple examples to illustrate kinetics vs thermodynamics, anion vs. cation, special case of proton *** Colour code indicates suggested presenter: HP or RH

Adsorption ...

... and related phenomena

Molecular adsorption

OH

Sophisticated EQCM / RDE

University of

eicester

- controlled mass transport
- Au & Fe surfaces

adsorption of ω-benzoyl alkanoic acid
 family of corrosion inhibitors

- \Box Inject inhibitor (1.1 \Rightarrow 2.5 mM)
 - monitor current & frequency

- Vary inhibitor concentration
 - determine isotherm

gravimetric & EIS routes

UPARISUNIVERSITAS

Molecular adsorption

Consider various models

University of

eicester

Langmuir-Freundlich works best

$$\theta = \frac{(Kc)^h}{1 + (Kc)^h}$$

determine adsorption energetics

		Fe	Au
Langmuir-Freundlich	h	0.6	0.7
-	K (L/mol)	3903	1250
	$\Delta G_{\rm ads}^{\rm o}$ (kJ/mol)	-30.46	-27.63
	R^2	0.98	0.99
Multisite Langmuir	n	2.0	2.1
	L (L/mol)	8437	3157
	$\Delta G_{\rm ads}^{\rm o}$ (kJ/mol)	-32.37	-29.93
	R ²	0.95	0.97
Flory-Huggins	. x	2.0	2.1
	K (L/mol)	3216	1018
	$\Delta G_{\rm ads}^{\rm o}$ (kJ/mol)	-29.98	-27.12
	R^2	0.95	0.97

See: Landolt, J. Electrochem. Soc., 148, 2001, B228.

Adsorption & reaction

EQCM / flow cell

University of

eicester

- controlled mass transport
- Au surface exposed to I⁻
- □ Changes at surface & in solution
 - solution viscosity alters ΔR
 - surface adsorption alters ∆m
 ♦ gravimetric interpretation

- Alternating solutions
 - 0.1 M NaClO₄ / 0.1 M NaClO₄ + 0.05 M Lil
 - E = 0.2 V (sufficient to dissolve "Au")
- \Box Adsorption of iodide: $\Delta m \sim monolayer$
- Oxidation of Au(0) to Au(I)
 - dissolution as [Aul₂]⁻
 - at 0 V, no Au oxidation

See: Landolt, J. Electrochem. Soc., 150, 2003, B504.

Underpotential deposition (UPD)

University of Leicester

UPD: the phenomenon

Observation in electrodeposition of one metal another ("foreign") metal surface

- some deposition occurs at a more positive potential than the reversible potential
- i.e. more readily than predicted by the Nernst equation
- many reported examples
 - ♦ Ag⁺, Cu²⁺, Hg²⁺, Pb²⁺ on Pt
 - ^t♦ Cd²⁺, *Tl*⁺, Bi³⁺, Zn²⁺ on Au
 - ♦ Pb²⁺, Bi³⁺, Sn³⁺, Zn²⁺ on Ag

Anodic potential shift

- related to difference in metal work functions
- usually: $\Delta E_p = \alpha \Delta \Phi$, where $\alpha = 0.5 \text{ V eV}^{-1}$

Extent of UPD

generally limited to monolayer

See: Kolb, J. Electroanal. Chem., 54, 1974, 25; Swathirajan, J.Electroanal. Chem., 28, 1983, 865; Hepel, J. Electroanal. Chem., 266, 1989, 409; Conway, J. Electroanal. Chem., 287, 1990, 13.

See: Hepel, J. Electroanal. Chem., 266, 1989, 409.

Surface complexation chemistry

University of **Leicester**

Metal ion complexation by surface-bound ligands

- [Ni(3-MeOsalophen-b-15-c-5)]
 - films electropolymerized on Pt
 - here, Γ = 77 nmol cm⁻²
 - expose to Ba²⁺ (varying concentration)
 - voltammetry + admittance spectra

Langmuir isotherm

$$\frac{1}{\Delta m} = \frac{1}{\Delta m_{\infty}} + \frac{1}{\Delta m_{\infty} Kc}$$

K = 1.56 x 10⁵ mol⁻¹ dm³

See: Martins, Chem. Comm., 1998, 4146

□ Frequency decrease with [Ba²⁺]

- metal complexation by crown ether
- Admittance slightly decreased
 - small viscoelastic effect (ca. 3%)
 - interpret gravimetrically (Sauerbrey)

UPPC PARISUNIVERSITAS

Guest-host surface electrochemistry

University of

Leicester

- *p-tert*-butylcalix[8]arene-C₆₀ complex
 - films cast on Au electrode
 - voltammetry + QCM + SECM

 \Box C₆₀ reduction results in complex decomposition

- electrode mass decreases
 - \mathbf{U}_{60} lost to solution
- electrode mass oscillations
 - 🏷 competing TBA+ entry

• Au/calixarene- C_{60} film • 0.1 M TBABF₄/CH₃CN • v = 50 mV s⁻¹

See: Bard, Anal. Chem., 70, 1998, 4146

Interfacial wetting

Simple model

Simplest case

University of

<u>_eicester</u>

- surface (electrode) perfectly contacted by fluid
- true for atomically smooth surface
 - ✤ not impossible, but practically rare
- Complete wetting:

Model surface

sinusoidal corrugations

Real cases

- gas / vapour trapped in surface features
 - 🔖 extent dependent on surface
 - balance of interfacial forces

See: Theisen, Anal. Chem., 76, 2004, 796.

Calculated meniscus ("bubble") pröfile

 \Box At any fixed roughness (Λ)*:

University of

eicester

- ullet increasing eta stabilises bubble
- hydrophobicity drives de-wetting

□ Wetting/de-wetting transition centred at $\theta \approx 100^{\circ} - 120^{\circ}$

Decreasing feature size

- ullet shifts transition to higher eta
- sharpens transition

*Fixed "spherical abrasive" geometry: h= $\Lambda/2\pi$

See: Theisen, Anal. Chem., 76, 2004, 796.

Partially de-wetted QCM response

Integrate gas/fluid profiles to obtain fractional liquid filling of surface features

University of

eicester

- Highlights sharpening of de-wetting transition of small surface features
- Responses are "normalised" with respect to feature size

Input fluid density and assume synchronous motion

 \clubsuit trapped fluid-derived Δ f responses

- Kanazawa result ("smooth" surface) provides baseline
- Responses not "normalised" with respect to feature size

The complete picture

h = 200 nm

3500

University of

eicester

- surface topography (h)
- fluid properties (η, ρ)

Leicester Full fluid mechanics approach

QCM response on fluid & interface depends on characteristics sizes of:

- vertical surface roughness
 (h ~ 10-100 nm)
- lateral surface roughness (I \sim 10 nm 1 μ m)
- fluid decay length
- wavelength in quartz

 $(\delta \sim 0.1-1 \ \mu m)$ $(\lambda \sim 1 \ mm)$

Generally:

 $h < \delta < \lambda$

- What about h & I?
- "Slight" roughness: h < l</p>
 - vertical < lateral surface roughness</p>
 - effect of roughness greatest for low fluid viscosity
- "Strong" roughness: h > l
 - vertical > lateral surface roughness
 - frequency shift independent of viscosity
 - frequency shift dependent on volume fraction & fluid density

See: Urbakh, Langmuir, 10, 1994, 2386.

Viscoelasticity

Leicester Polyvinylferrocene redox cycling

University of

U Typical EQCM experiment

Low concentration: anion and solvent entry upon oxidation

High concentration: anion, solvent and salt entry upon oxidation

PVF Electroprecipitation

Principle

University of Leicester

- PVF⁰ is a soluble in CH₂Cl₂,
- PVF⁺A⁻ is not

Process

(solution)

- electrochemically oxidize
- $PVF^0 \rightarrow PVF^+$

(film)

Equivalent circuits

CNTS

University of

eicester

University of **Leicester**

The problem

Theory

• use film parameters to calculate acoustic (electrical) impedance

 $[h_{f'} \rho_{f'} G', G''] \Rightarrow Z_{S}(\omega) = \text{Re}(Z_{S}) + j \text{Im}(Z_{S})$

4 input parameters ➡ 2 output parameters …… *no problem*

Experimental application

• wish to use acoustic (electrical) impedance to calculate film parameters

 $Z_{s}(\omega) = \operatorname{Re}(Z_{s}) + j \operatorname{Im}(Z_{s}) \Rightarrow [h_{f'}, \rho_{f'}, G', G'']$

2 input parameters ➡ 4 output parameters …

.....underdetermined

Previous (gravimetric) approaches

- restrict attention to acoustically thin films ($R_2 = 0$; $\phi = 0$)
- $[\Delta f, Q] \Rightarrow [h_f, \rho_f]$ no viscoelastic insight
- acoustically thick films

```
assume \rho_f = \rho_S, \rho_P or 1
```

assume G' « G" or value for loss tangent (G'/G")

separately estimate h_f

.....assumptions to reduce to 2 parameter problem

use higher harmonics

..... may assume information sought

University of **Leicester**

First method

- 4 parameter fit, with "soft" constraints on 2 parameters
 - \clubsuit film density: $\rho_{s} < \rho_{f} < \rho_{P}$ or $\rho_{s} > \rho_{f} > \rho_{P}$
 - \oint film thickness: $h_f > h_f^0$ h_f^0 defined by Q and ρ_P

 \clubsuit fit impedance response: Z_s(ω) \Rightarrow [G', G"]

.....imperfect

Better approach

split into two separate 2-parameter problems, each fully determined acoustically thin film: [Δf, "X"] ➡ [h_f, ρ_f]

4 assume film homogeneity: h_f α "X"; ρ_f = constant

 $\stackrel{\text{\tiny b}}{\Rightarrow}$ acoustically thick film: $Z_{s}(\omega) \Rightarrow [G', G'']$

..... unique fit

["X" = any measure of coverage, e.g. electrochemical charge Q]

See: Jackson, Anal. Chem., 73, 2001, 540.

eicester Mechanical models for viscoelasticity

Maxwell model

University of

Stress (T) and strain (S):

Elastic deformation of film:

Viscous dissipation of energy:

G = T/S

 $T = \mu S$ (Hooke's Law)

model: spring, stiffness m_f

 $T = \eta(dS/dt)$ (Newtonian fluid)

model: dashpot, viscosity η_{f}

$$\tau = \frac{\eta_f}{\mu_f} = \tau_0 \exp[\Delta H_a / RT]$$

$$G' = \frac{G_0 + \omega^2 \tau^2 G_\infty}{1 + \omega^2 \tau^2}$$

$$G'' = \omega \tau \frac{G_{\infty} - G_0}{1 + \omega^2 \tau^2}$$

 $\tau = f(T) \dots so G' \& G'' = f(T)$

Mechanical properties: importance of timescale

Low temperature

Rigid solid

Fluid

Time-temperature equivalence concept

Explore effect of timescale on dynamics through G

• directly via frequency, ω (harmonics)

University of

leicester

• indirectly via temperature, T (relaxation time, τ)

Stress effects in electrodeposited films

Film mass, stress & adhesion

The QCM responds to mass and stress

Limiting case of zero stress

University of

<u>eicester</u>

• $\Delta S = 0 \Rightarrow$ Sauerbrey equation

- $\Delta f / s^{-1}$ = measured frequency change $\Delta m / g$ = change in mass $\Delta S / N m^{-1}$ = change in stress
- f_Q / s⁻¹ = fundamental frequency r_Q / g cm⁻³ = quartz crystal density N_Q / m s⁻¹ = crystal frequency constant K = constant

Double resonator technique

- Measure responses of two crystal cuts
 Solution
 <
- AT- and BT-cut
 - similar mass responses 🗞
 - very different stress responses
- solve simultaneous equations for $\Delta m \& \Delta S$

d = quartz resonator thickness

Al plating: stress & adhesion

Stress during Al plating?

University of

Leicester

 Electroplating of multiple layers of Al on Au / quartz crystals (AT and BT cut)

Stress can cause delamination and failure of complex thin film architectures

Low temperature deposition (T = 5°C)

University of Leicester

- Current response
 - independent of cut
 minor area difference
- Frequency response
 - slightly dependent on cut
 stress present
- Comparison with Sauerbrey
 mass dominant

<u>Leicester</u> High temperature deposition (T = 55°C)

University of

Current response

independent of cut
independent of cut

Frequency response

slightly dependent on cut
 stress present

Comparison with Sauerbrey

stress significant

Stress and mass effects

General case

University of Leicester

$$\frac{\Delta f^{AT}}{\Delta f^{BT}} = \left(\frac{N_Q^{BT}}{N_Q^{AT}}\right) \frac{\left[\left(K^{AT} A f_Q \Delta S / \Delta m\right) - 1\right]}{\left[\left(K^{BT} A f_Q \Delta S / \Delta m\right) - 1\right]}$$

Stress dominant ($\Delta S >> \Delta m$):

$$\frac{\Delta f^{AT}}{\Delta f^{BT}} \rightarrow \frac{N_Q^{BT}}{N_Q^{AT}} \cdot \frac{K_Q^{AT}}{K_Q^{BT}}$$

D Mass dominant ($\Delta S \ll \Delta m$):

$$\frac{\Delta f^{AT}}{\Delta f^{BT}} \rightarrow \frac{N_Q^{BT}}{N_Q^{AT}}$$

